

EXAMINATION MATERIAL ZUEB - 2022

CHEMISTRY XI

SECTION "A" MULTIPLE CHOICE QUESTION (MCQ'S)

CHAPTER # 01 FUNDAMENTAL CONCEPT OF CHEMISTRY

SUB TOPIC	Multiple Choice Question	ANSWER
	1. This number has five significant figures:	
	a. 3.0031	
	h. 2202	
	c 10000	3.0031
	d 1000	
1.2 Significant figures	d. 1.000	
	2. 9. 6600 contains significant figures.	
	a. One	
	b. two	
	c. three	two
	d. four	
1.5 Empirical Formula	3. Round off 7.865 in to two significant figures:	
	a. 7.8	
	b. 7.7	
	c. 7.900	7.9
a second second	d. 7.9	
1.6 Molecular	 4. The formula, which expresses the actual number of each kind of atom present in themolecule of a compound, is called a. molecular formula b. empirical formula c. structural formula d ionic formula 	molecular formula
Formula	5 The empirical Formula of a compound indicates	
	a Actual no. of atoms	
	h least no of atom	least no. of
	c both a and b	atom
	d none	utom
-	6 Atomic mass molecular mass or formula mass expressed in grams	
	is called	
	a Molar mass	
	h mole	
	c molar volume	Molar mass
	d both a and b	
1.8 Calculations	7 Atomic mass of gold is 197 the number of moles of one gram of	
Based onchemical	and ic.	
equation	a 6.03 x 10-23	
	b $5.076 \times 10^{-2.5}$	
	4.076×10^{-3}	5.076 x 10-3
	$d \qquad \text{both } h \& c$	

	8.The mass of 6.02 x 1023 molecules of water isa.1.8gb.18gc.180gd.none of these	18g
19 Limiting	9. The formula, which gives the simple ratio of each kind of atoms	
roactant	present in the molecule of compound, is called	
Teaclant	a. molecular formula	Empirical
	b. empirical formula	Empirical
	c. structural formula	formula
	d. ionic formula	
	10. Two moles of water contains molecules.	
	a. 6.02×10^{23}	
	b. 6.02×10^{22}	1 224 407
	c. 1.204x 10 ²³	1.204x 10-
	d. 1.204x 10 ²⁴	
	11. 9 grams of water is equal to	
	a. 1 mol	
	b 05 mol	
	c 12 mol	0.5 mol
	d. 1.5 mol	
	12. 6600 contains significant figures.	
	a. One	
	b Two	
	c Three	Two
	d four	
	13. While considering the full of significant figures the simplified result of	200
	3.1+14.307 IS:	Sec. 1. 1.
	a. 17.467	1
	b. 17.47	18
	C. 17.50	
	0. 18	
	a. 0.5	
	1 4 33.3	
	4 22	

CHAPTER # 02 STATES OF MATTER

SUB TOPIC	Multiple Choice Question	ANSWER
	1. Crystalline solids are	
2.1 Kinetic Theory	a) Asymmetrical	
	b) symmetrical	b)
	c) both a and b	symmetrical
	d) none	
	2. Diamond and graphite are	2
	a) Isomorphous	100
	b) polymorphous	c) alletrones
2.3 Gas laws	c) allotropes	c) anotropes
	d) both a and c	
	3. A small building block which shows whole information about	
	crystal is	
11.52	a) Crystal	
11000	b) unit cell	b) unit cell
	c) both a and b	
	d) none	
2.4 Ideal Cas	4. Liquid molecules show	
Z.4 Ideal Gas	a) Brownian motion	
	b) zigzag motion	a) Brownian
	c) rotatory motion	motion
	d) all of thes20. 2	
	5. Movement of one liquid molecule into the other liquid is called	100
	a) Osmosis	
	b) diffusion	
	c) both a and b	b) diffusion
27 Viscosity	d) none	100
EXP	 6. Vapour pressure of a liquid is measure at a) Boiling point b) melting point c) equilibrium state d) none 	a) Boiling point
	7. He expressed the relation between volume and temperature of a	
	gas at constant Pressure	
2.8 Surface Tension	a) Charles	
	b) Boyle	a) Charles
	c) Gay-Lussac	
-	d) Avogadro	
	8. Boiling point of water in Celsius scale is	
	a) 273C ⁰	
	b) 100C ⁰	b) 100C⁰
	c) -273C ⁰	.,
	d) none of these	
	9. Boiling point of water in Fahrenheit scale is	
2.12 Types of crystal	a) 50F	
,, , , ,	b) 100F	d) 2125
	c) 110F	u) 212F
	d) 212F	

		10.	The highest value of viscosity is of:	
		a)	Water	
		b)	Ether	c) Bonzono
		c)	Benzene	cj belizelle
2.13	Isomorphism	d)	Mercury	
		11.	reduces surface tension:	
		a)	Oil	
		b)	Detergent	d) Both b and
		c)	Caustic soda	с
		d)	Both b and c	
		12.	Water can exist in states	
		a)	one	
		b)	two	
2.14	Polymorphism	c)	three	c) three
		d)	four	
		13.	In general gas equation (PV=nRT), R is called	
	11	a)	Gas constant	
		b)	universal gas constant	b) universal
		c)	ideal gas constant	gasconstant
	11-22	d)	all of these	
		14.	The temperature at which volume of a gas theoretically becomes	
	[]	zero i	s called	
		a)	Critical temperature	c) absolute
1		b)	transition temperature	zero
1.1		c)	absolute zero	
		d)	both a and b	

N

Taninat

CHAPTER # 03 ATOMIC STRUCTURE

SUB TOPIC	Multiple Choice Question	ANSWER
3.2 Crookes's tube	1. The maximum number of electrons that can accommodated by	
Experiment	a p-orbital is	
	a)2	c) 6
	b) 4	-, -
	c) 6	
	d) 10	
	2. A proton is	b) a
2.1 Padioactivity	a) a helium ion	positively
3.4 Radioactivity	b) a positively charged particle	charged
	c) a negatively charged particle	particle
	d) None of these	
	3. The fundamental particles of an atom are	
	a) Electrons and protons	d) Protons,
	b) electrons and neutrons	Neutrons and
3.5 Chadwick	c) Electrons	electrons
Experiment	d) Protons, Neutrons and electrons	
	4. Neutrons were discovered by.	
	a) Rutherford	a) Chadudali
	b) Bonr	c) Chadwick
11 1 1 1 1 1 1 1	d) Dalton	
3 7 Plank's Quantum	u) Daton	
Theory	5. Electrons are always filled in order of increasing energy. This	
meory	a) Dauli's Evolucion Dringinlah) Uncortainty Dringinla	c) Aufbau
	a) Pauli S Exclusion Principleb/oncertainty Principle	Principle
	d) none of these	
38 Spectra	6 Which model says that an atom consists of small dense	
3.6 Spectra	nositively charged nucleus which is surrounded by electrons, revolving	
	around it.	
	a) Max Plank	c) Rutherford
	h) Neil Bohr	c, numeriora
	c) Rutherford	er //
	d) Moseley	11
	7 These radioactive rays are material in nature	
	a) Alpha	
3.9 Rutherford's Model	b) Beta	d) both a & b
of anAtom	c) Gamma	
	d) both a & b	
	8. The energy required to break a chemical bond to form neutral	
	atoms is called	
	a) Ionization Potential	c) Bond
3 11 Bohr's Theory	b) Electron Affinity	Energy
S.II Bonn S meory	c) Bond Energy	
	d) electronegativity	
	9. Sodium ion is iso-electronic with:	
	a) Ne	
3.12 Bonr's theory &	b) Mg ²⁺	d) All of these
Hydrogenatom	c) Al ³⁺	
	d) All of these	

	10. Lyman Series of spectral lines appear in the region	
	a) Ultraviolet	· · · · · · ·
	b) Infra red	a) Ultraviole
3.13 Determination of	c) Visible	
energy	d) far infra red	
	11. Nitrogen has three unpaired electrons, this information is	
	given by:	
	a) Hund's rule	b) Pauli's
	b) Pauli's exclusion principle	exclusion
	c) (n+l) rule	principle
3.15 Heisenberg's	d) Aufbau principle	
UncertaintyPrinciple	12. When an electron falls from n=4 to n=2, the light rays belong	
, ,	to:	
	a) Ultraviolet region	
	b) Infra red region	c) Visible
	c) Visible region	region
	d) Infar infra red region	
3.16 Energy Level		
Sizo Energy Level	13. Which of the following quantum number describes the shape	
	of the orbital?	
	a) Principle	
	b) Azimuthal	b) Azimuth:
	c) Spin	b) Azimutha
	d) Magnetic	
	14. The electronic configuration of 7N = 1s2, 2s2, 2px2, 2py1, 2pz0,	
	the rule or principle	
3.17 Orbitals &	violated is:	
Quantumnumber	a) Pauli's exclusion	
	h) Aufhau	b) Aufbau
	(n+1)	.,
	d) Hund's	
	15 When Berullium was hombarded by alpha particles, the ray	
3.18 Pauli's Exclusion	amitted is:	
Principle	ellitted is.	
	a) Cathode ray	
	b) Calial ray	d) Neutron
	c) Proton	- 11 -
	d) Neutron	
	16. Phenomenon of radioactivity was discovered by:	F 11
5.19 Snapes of	a) Rutherford	
Orbitals	b) Neil Bohr	c) Henry
	c) Henry Bacquerel	Bacquerel
	d) Pierie curie	
	17. It consists of Helium Nuclei or Helium ion (He++).	
3 20 Electronic	a) alpha rays	
	b) Beta rays	
configuration	c) gamma rays	a) alpha ray
	d) none of these	

CHAPTER # 04 CHEMICAL BONDING

SUB TOPIC	Multiple Choice Question	ANSWER
	1. The energy required to break a chemical bond to form neutral	
	atoms is called	
	a) Ionization Potential	c) Rond
	b) Electron Affinity	с) вопа
	c) Bond Energy	Energy
	d) electronegativity	
4.2 Electrovalent OR	2. The chemical bond present in H-Cl is	
Ionic Bond	a) Non Polar	
	b) Polar Covalent	b) Polar
	c) Electrovalent	Covalent
	d) co-ordinate covalent	
	3 The most polar covalent hand out of the following is	
110		
	o) H	b) H-F
	d none of these	
	d) none of these	
4.5 Dipole Moment	4. A chemical bond in which an electron has been completely	
	transferred from one atomto another.	
	a) Ionic	
	h) Covalent	a) Ionic
	c) co-ordinate	
	d) none of these	
	5. The sp ³ orbitals arein shape.	- 11 M
	a) Tetrahedral	
	b) Trigonal	N 1
4.7 Bond Energy	c) Tetragonal	a)Tetrahedral
	d) angular	
	6. The shape of CH ₄ molecule isa)Tetrahedral	
	b) Trigonal	
	c) tetragonal	a)Tetrahedral
	d) angular	
	7. Nitrogen atom in NH ₃ hasunshared electron pair.	
	a) One	
	b) two	a) One
4.8 Sigma & Pi-Bond	c) three	a) One
	d) none of these	
	8. Bond is formed due to linear overlap.	
	a) Sigma bond	
	b) Pi bond	1
	c) Hvdrogen bond	a)Sigma bond
	d) none of these	
	9. In ethene molecule there are	
	a) 4sigma and 1 pi bond	
4.9 Hybridization	h) 5sigma and 1 ni bond	b) 5sigma and
	c) 3sima and 2 ni bond	1 pibond
	d) 2sigma and 3 ni hond	- Pibolia

	10. The atom which accepts a lone pair of electron, is called:a) Lewis acid	
	b) Lewis base	
	c) Bronsted acid	a) Lewis acio
	d) Bronsted base	
	11. S.I unit of dipole moment:	
	a) Debye	
	b) Coulomb	a) Debye
4.10 Shape of Simple	c) Electron volt	
Molecule	d) All of these	
	12. Bond angle in the molecule of C_2 H ₄ is of 120°	
	a) 120 b) 109 5 °	
	c) 180 °	a)120º
	d) 107°	
	13. A molecule of H ₂ O has structure.	
	a) Linear	
	b) Trigonal	
	c) tetragonal	d) angular
	d) angular	
	14.Shape ofmolecule is linear.a)BaCl2b)BF3 c)NH3d) none of these	a)BaCl2
	15 Penulsive force between electron pair in a molecule is	
	15. Repuisive force between electron pair in a molecule is	
111 Hydrogen Bonding	maximum when it has an angleof	
4.11 Hydrogen Bonding	a) 120 °	
4.11 Hydrogen Bonding	a) 120 ° b)109.5 °	c) 180 °
4.11 Hydrogen Bonding	 a) 120° b)109.5° c) 180° d) None of these 	c) 180 °
4.11 Hydrogen Bonding	 a) 120 ° b)109.5 ° c) 180 ° d) None of these 	c) 180 °
4.11 Hydrogen Bonding	13. Repuisive force between election pair in a molecule is maximum when it has an angleof a) 120 ° b)109.5 ° . c) 180 ° d) None of these 16. Best hydrogen bonding is found in a) HBr	c) 180 °
4.11 Hydrogen Bonding	13. Repuisive force between election pair in a molecule is maximum when it has an angleof a) 120 ° b)109.5 ° . c) 180 ° d) None of these 16. Best hydrogen bonding is found in a) HBr b) HCl	c) 180 °
4.11 Hydrogen Bonding	13. Repuisive force between election pair in a molecule is maximum when it has an angleof a) 120 ° b)109.5 ° . c) 180 ° d) None of these 16. Best hydrogen bonding is found in a) HBr b) HCl c) HI	c) 180 ° d) HF
4.11 Hydrogen Bonding	13. Repuisive force between election pair in a molecule is maximum when it has an angleof a) 120 ° b)109.5 ° c) 180 ° d) None of these 16. Best hydrogen bonding is found in a) HBr b) HCl c) HI d) HF	c) 180 ° d) HF
4.11 Hydrogen Bonding	 13. Repuisive force between electron pair in a molecule is maximum when it has an angleof a) 120 ° b)109.5 ° c) 180 ° d) None of these 16. Best hydrogen bonding is found in a) HBr b) HCl c) HI d) HF 17. The cloud of charge that surrounds two or more nuclei is called 	c) 180 ° d) HF
4.11 Hydrogen Bonding	 a) 120° b)109.5° c) 180° d) None of these 16. Best hydrogen bonding is found in a) HBr b) HCl c) HI d) HF 17. The cloud of charge that surrounds two or more nuclei is called a) Atomic 	c) 180 ° d) HF
4.11 Hydrogen Bonding	 a) 120° b)109.5° c) 180° d) None of these 16. Best hydrogen bonding is found in a) HBr b) HCl c) HI d) HF 17. The cloud of charge that surrounds two or more nuclei is called. a) Atomic b) Molecularc)Hybrid 	c) 180 ° d) HF b) Molecula
4.11 Hydrogen Bonding	 13. Repuisive force between election pair in a molecule is maximum when it has an angleof a) 120 ° b)109.5 ° c) 180 ° d) None of these 16. Best hydrogen bonding is found in a) HBr b) HCl c) HI d) HF 17. The cloud of charge that surrounds two or more nuclei is called a) Atomic b) Molecularc)Hybrid d) none of these 	c) 180 ° d) HF b) Molecula

CHAPTER # 05 CHEMICAL ENERGETICS

SUB TOPIC	Multiple Choice Question	ANSWER
	1. The reaction which gives positive enthalpy of heat ΔH^+	
	408KJ/mole represents	
	reaction.	
	a) Endothermic	2)
E 1 Thormodynamic	b) Exothermic	d) Endatharmia
5.1 merhodynamic	c) Reversible	Endothermic
system	d) None of these	
	2. During which reaction container used becomes cold?	
	a) Endothermic	
	b) Exothermic	
	c) Reversible	b) Exothermic
	d) Both b and c	
	3. Combustion reaction is an example of:	
	a) Endothermic	
	b) Exothermic	
E.D. First Louis of	c) Reversible	b) Exothermic
5.2 First Law of	d) Both b and c	
thermodynamic	4. Jug is an example of:	
	a) Open system	
	b) Closed system	
11.55526.74	c) Isolated system	a) Open
	d) None of these	system
	5. If heat content of product is less than reactant, the reaction is	
	known as:	
	a) Endothermic	
	b) Exothermic	
	c) Reversible	b) Exothermic
5.5 Hess's Law	d) Both b and c	- 11 ·
	6. When work is done by the surrounding, the sign of 'w' will be:	
	a) Positive	- 11
	b) Negative	5 //
	c) No sign	b) Negative
	d) none of these	
	7 At constant processo the best sheeted as suched is used to	
	At constant pressure, the neat absorbed or evolved is used to: Change of onthalow	/ · · · · · · · · · · · · · · · · · · ·
	a) Change of entital program of sustem	a) Change of
	b) Change in internal energy of system	a) change of
	d) pope of these	enthalpy
	d) Indie of these	
	 All combination reaction reactions are usually: Endethermic 	
	a) Endounermic	
	b) Exothermic	h) Evethermai-
	c) Reversible	b) Exothermic
	9 When work is done on the surrounding the sign of 'w' will be	
5.6 Heat of Formation	a) Positive	
	h) Negative	
	c) No sign	a) Positive
	d) Both	.,
	w/ Dotti	

10.	The heat content of the reaction is represented by:	
a)	ΔΕ	
b)	ΔΗ	
c)	E	b) ΔH
d)	н	
11.	Neutralization reaction is an example of:	
a)	Endothermic	
b)	Exothermic	h) Exothermi
c)	Reversible	b) LAOUIEIIII
d)	Both b and c	
12.	A system, which neither exchanges energy nor matter with	
the su	rroundings is	
1	system.	
a.	Open	c isolated
b.	Closed	c. isolated
с.	Isolated	
d.	none of these	

A MATIO

N

CHAPTER # 06 CHEMICAL EQUILIBERIUM

SUB TOPIC	Multiple Choice Question	ANSWER
 6.2 Equilibrium state 6.3 The Law of Mass Action(Equilibrium Law) 	 At equilibrium the rate of forward reaction and the rate of reverse reaction are a.Equal b. changing c. Different d. none of these Such reactions which proceed to forward direction only and 	a.Equal
6.4 Determination of	are completed aftersometime are called_reaction. a. Irreversible b. Reversible c. c. Molecular d. d. none of these	a. Irreversible
Equilibrium constant	3. NH_3 is prepared by the reaction $N_2 + 3H_2$ $2NH_3 \Delta H = -$ 21.9 Kcal. The maximumyield of NH3 is obtained .a).At low temperature and high pressureb).at high temperature and low pressurec).at high temperature and high pressured).at low temperature and low pressure	a).At low temperature andhigh pressure
6.5 Application of The Law ofEquilibrium	 The active masses of reacting substances mean: a).mol/dm³ b). g/dm³ c).mol/cm³d). g/cm³ 	a).mol/dm³
E	Solubility product constant is denoted by a).Kc b). Ksp c). Kr d).K	b). Ksp
6.6 Le-Chatlier's Principle	 6. Ratio of acitive masses of products an reactants at equilibrium is called:a).Kc b). Ksp c).Kr d).Kf 	a).Kc
6.7 Industrial	 For an endothermic reaction, when temperature is increases the equilibrium willshifts: a). Forward b). Backwardc).Both d). None 	a). Forward
Application of Le-Chatlier Principle	 8. The substance which increases the rate of reaction but remains unchanged at the endof reaction, is called: a). Reactant b).Product c).Limiting reactant d). Catalyst 	d). Catalyst

	 9. The rate of chemical reaction is proportional to the product of the active masses of the reacting substances. This is the statement of: a). First law of thermodynamicsb). Equilibrium law c). Hess's law d). Le-Chatelier's Principle 	b). Equilibrium law
5.8 Solubility Product	10. In Haber's process, catalyst used is: a). Al2O3b). V2O5 c). Pt d).Ni	d).Ni
	 11. In an equilibrium, if concentration of product decreases reaction will move: a). Forward b). Backwardc). Both d). Remain unchanged 	a). Forward
120	 12. In an equilibrium; A + B === C ; when some amount of 'A' is added, reaction will shifttowards: a). Forward b). Backwardc). Both d). None 	a). Forward

TRINAT

CHAPTER # 07 SOLUTION AND ELECTROLYTE

SUB TOPIC	Multiple Choice Question	ANSWER
7.2 Hydration		
	1. What is the pOH of a solution whose pH is 7?	
	a) 7	
	b) 10c)4	a) 7
7.3 Hydrolysis	d) 2	a) /
	2. Universal indicator has color in basic medium.	
	a) Red	
	b) Blue	
74 Theory of	c) Green	b) Blue
ionization	d) Purple	
Ionization		
	3. When Na ₂ CO ₃ is hydrolyzed, the solution will be	
	a) Acidic	
	b) Basic	
	c) Neutral	D) Basic
7.7 Oxidation number	d) None of these	
	4 In water molecules dissociation into ions	
	a Hydration	
	b. Hydrolysis	
7.8 Oxidation &	c. Neutralization	b. Hydrolysis
ReductionReactions	d) none of these	
	5. Reduction is a chemical process in which the oxidation	
	number of a substance is:	
	a. Not change	
79 Ionic Balance	b. Increases	c. Decreases
Fountion	c. Decreases	
Equation	u. Remain same	
	bSolution turns red litmus to blue.	
	a. Aciuc	F / /
	D. Dasic	b. Basic
	d Amphoteric	
	7. In a solution, if some quantity of base is added, its pH:	/
	a. Increases	
	b. decreases	
	c. has no effect	a.Increases
	d. First increase then decrease	
7.10 Indicators	8. Which indicator should be used in the titration of HCl Vs	
	NH₄OH	
	a. Phenolphthalein	
	b. Methyl Orange	b. Methyl
	c. Litmus	Orange
	d. All of these	

	9. Which of the following is most powerful reducing agent?	a) Sadium
7.12 pH	10. Which of the following is an example of oxidation reaction?	
	b. $M^{+2} == M^{+3}$	
	c. Cl ⁻¹ === Cl ⁻¹	b N1+2 N1+3
	d. both b and c	D. WI WI
	11. What is the pOH of a solution whose pH is 3?	
1/152	a. b b 11	
1/223	c. 4	b. 11
	d. 2	
	12. Universal indicator hascolor in acidic medium.	
	a. Red	
11	c. Green	a. Red
	d. Purple	
	13 Water is an/a compound:	
	a. Acidic	T . 11
Section 1	b. Basic	d Amphotoric
	c. Neutral	u. Amphoteric
	d. Amphoteric	
	14. The pH of human blood is: a. 7.0	5//
	b. 7.4	F / /
	c. 8.6	b. 7.4
	d. 6.0	
	15. During balancing the equation by ion electron method, basic medium is balanced by:	
	a. H+	
	b. –OH	
	c. Ion	J. –011
	d. Electrons	

CHAPTER # 08 CHEMICAL KINETICS

SUB TOPIC	Multiple Choice Question	ANSWER
8.2 Rate Constant &	 A catalyst speeds up a chemical reaction because it increase: a. Internal energy b. Potential energy c. Threshold energy d. Activation energy 	a. Internal energy
	 2. The unit of specific rate constant: a. mol/dm3 b. mol/dm3.s c. dm3/mol. s d. s-1 	d. s-1
2	 In zero order reaction, the rate is independent of (a) Temperature of reaction (b) concentration of reactants (c) Concentration of products (d) none of above 	(b) concentration of reactants
8.3 Types of Reaction	 4. The rate of reaction (a) Increases (b) decreases (c) Remains the same (d) may decrease or increase as the reaction proceeds 	(d) may decreaseor increase as thereaction proceeds
EZ.	S. Rate ofreaction can be measured bymethods. a) Two (b)Only one (c) Zero (d) Four	a) Two
	6.By increasing the temperature rate of reaction will:(a)Decrease(b)Increase(c)Zero(d)Unchanged	(b) Increase
	 7. When a reaction occurs in many steps then the slowest step is the (a) Main step (b) enthalpy determining step (c) Mechanism determining step (d) rate determining step 	(d) rate determining
8.4 Factors Affecting Rate ofreaction	 8. Photochemical reactions usually have order (a) One (b) zero (c) two (d) three 	(b) zero

9.	The experimental relationship between a reaction rate and	
the co	oncentration ofreactants is called	
(a)	Order of reaction	(d) rate law
(b)	specific rate	
(c)	Law of mass action	(u) rate lav
(d)	rate law	
10.	The sum of exponents of the conc. terms in the rate equation	
is call	ed	
is call (a)	ed Rate of reaction	
is call (a) (b)	ed Rate of reaction order of reaction	(b) order o
is call (a) (b) (c)	ed Rate of reaction order of reaction Specific rate constant	(b) order o reaction

RINAT